RESEARCH ARTICLE

OPEN ACCESS

On The Number of Representations of a Positive Integer by the Binary Quadratic Forms with Discriminants -128, -140

Teimuraz Vepkhvadze

(Department of Mathematics, Iv. Javakhishvili Tbilisi State University, Georgia)

Abstract

We shall obtain the exact formulas for the number of representations by primitive binury quadratic forms with discriminants -128 and -140.

Key words and phrases: binary quadratic form, genera, class of forms.

I. Introduction

Let $f = f(x; y) = ax^2 + bxy + cy^2$ be a primitive integral positive-definite binary quadratic form. The positive integer *n* is said to be represented by the form *f* if there exists integers *x* and *y* such that $n = ax^2 + bxy + cy^2$.

The number of representations of n by the form fis denoted by r(n; f). It is well known how to find the formulas for the number of representations of a positive integer by the positive-definite quadratic form which belong to one-class genera. Some papers are devoted to the case of multy-class genera. Using the simple theta functions Peterson [1] obtained formulas for r(n; f) in the case of the binary forms with discriminant -44. These forms and some other ones were considered by P.Kaplan and k.S.Williams [2]. Their proof for odd number n based on Dirichlet theorem. In the same work in case of forms with discriminants equal to -80, -128 and -140 application of this theorem did not succeed and formulas only for even n have been received. In [3] we considered two binary forms $3x^2 + 2xy + 7y^2$ and $3x^2 - 2xy + 7y^2$ of discriminant -80 and two binary forms $3x^2 + 2xy + 11y^2$ and $3x^2 - 2xy + 11y^2$ of discriminant -128. Using Siegel's theorem [4] we obtained exact formulas for the number of representations by these forms. But in case of the other primitive forms with discriminants -128 and -140 we have to use the theory of modular forms. In this paper by means of the theory of modular forms the formulas for the number of representations of a positive integer by the forms $f_1 = x^2 + 32y^2$, $f_2 = 4x^2 + 4xy + 9y^2$ $f_3 = x^2 + 35 y^2$, $f_4 = 4x^2 + 2xy + 9y^2$ $f_5 = 4x^2 - 2xy + 9y^2$, $f_6 = 5x^2 + 7y^2$

 $f_7 = 3x^2 + 2xy + 12y^2$ $f_8 = 3x^2 - 2xy + 12y^2$ are obtained.

II. Basic results

In order to use the theory of modular forms in case of the binary forms f_k (k = 1, 2, ..., 8)) it is necessary to construct the cusp form $X(\tau)$ which is so-called remainder member. For this purpose we use the modular properties of the generalized theta – function defined in [5] as follows:

$$\mathcal{G}_{gh}(\tau; p_{\nu}, f) = \sum_{x \equiv g \pmod{N}} (-1)^{\frac{h'A(x-g)}{N^2}} p_{\nu}(x) e^{\frac{\pi i \alpha' A x}{N^2}}$$

Here A is an integral matrix of f, $x \in Z^S$, g and h are the special vectors with respect to the form f, $p_v(x)$ is a spherical function of the v -th order corresponding to f; N is a step of the form f.

In particular, if f is a binary form, g and h are zero vectors and $p_0(x) = 1$, then

$$\mathcal{G}_{gh}(\tau; p_0, f) = \mathcal{G}(\tau; f)$$

r(n; f) is a Fourier coefficient of $\mathscr{G}(\tau; f)$. We assume, that

 $\mathcal{G}_{gh}(\tau; p_0, f) = \mathcal{G}_{gh}(\tau; f), \text{ where } p_0 = 1.$

 $E(\tau; f)$ is the Eisenstein series corresponding to f (see, e.g., [3]).

By means of the theory of modular forms we prove the following theorems. Theorem 1.

Let
$$f_1 = x^2 + 32 y^2$$
,
 $f_2 = 4x^2 + 4xy + 9y^2$, $g = \begin{pmatrix} 16 \\ 0 \end{pmatrix}$,

$$h = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \ f = 4x^2 + 8y^2.$$
 Then we have
$$\mathcal{G}(\tau; f_1) = \frac{1}{2}E(\tau; f_1) + \frac{1}{2}\mathcal{G}_{gh}(\tau; f),$$

$$\mathcal{G}(\tau; f_2) = \frac{1}{2} E(\tau; f_1) - \frac{1}{2} \mathcal{G}_{gh}(\tau; f).$$

Theorem 2.

Let
$$f_3 = x^2 + 35 y^2$$
,
 $f_4 = 4x^2 + 2xy + 9y^2$
 $f_5 = 4x^2 - 2xy + 9y^2$,
 $g = \begin{pmatrix} 70 \\ 0 \end{pmatrix}, h = \begin{pmatrix} 70 \\ 0 \end{pmatrix}$.
Then we have

Then we have

$$\begin{aligned} & \mathcal{G}(\tau; f_3) = \frac{1}{2} E(\tau; f_3) + \frac{2}{3} \mathcal{G}_{gh}(\tau; f_4) \\ & \mathcal{G}(\tau; f_4) = \mathcal{G}(\tau; f_5) = \frac{1}{2} E(\tau; f_3) - \frac{1}{3} \mathcal{G}_{gh}(\tau; f_4) \end{aligned}$$

Theorem 3.

Let
$$f_6 = 5x^2 + 7y^2$$
, $f_7 = 3x^2 + 2xy + 12y^2$,
 $f_8 = 3y^2 - 2xy + 12y^2$, $g = \begin{pmatrix} 0\\70 \end{pmatrix}$, $h = \begin{pmatrix} 70\\0 \end{pmatrix}$.

Then we have

$$\begin{aligned} &\mathcal{G}(\tau; f_6) = \frac{1}{2} E(\tau; f_6) - \frac{2}{3} \mathcal{G}_{gh}(\tau; f_7), \\ &\mathcal{G}(\tau; f_7) = \mathcal{G}(\tau; f_8) = \frac{1}{2} E(\tau; f_6) + \frac{1}{3} \mathcal{G}_{gh}(\tau; f_7) \end{aligned}$$

Equating the Fourier coefficients in both sides of the identities from theorems 1-3 we get the following theorems: Theorem 4

Let
$$n = 2^{\alpha} u$$
, $(u, 2) = 1$, $f_1 = x^2 + 32 y^2$
 $f_2 = 4x^2 + 4xy + 9y^2$. Then
 $r(n; f_k) = \sum_{v|u} \left(\frac{-2}{v}\right) + v(n; f_k)$ for
 $u \equiv 1 \pmod{8}$,
 $= 2\sum_{v|u} \left(\frac{-2}{v}\right)$ for $\alpha = 2$, $u \equiv 1 \pmod{8}$ and for
 $\alpha > 3$, $u \equiv 1, 3 \pmod{8}$,

=0 otherwise,

where
$$k = 1, 2$$
; $\left(\frac{-2}{\nu}\right)$ is Jakobi
symbol and $\nu(n; f_k) = \left(-1\right)^{k-1} \frac{1}{2} \sum_{\substack{n=x^2+8y^2\\2\dagger x}} \left(-1\right)^y$

Theorem 5.

Let
$$n = 2^{\alpha} 5^{\beta} 7^{\gamma} u$$
, $(u, 10) = 1$, $f_3 = x^2 + 35y^2$,
 $f_4 = 4x^2 + 2xy + 9y^2$, $f_5 = 4x^2 - 2xy + 9y^2$
Then
 $r(n; f_k) = \frac{1}{6} \left(1 + (-1)^{\beta + \gamma} \left(\frac{u}{5} \right) \right) (1 + (-1)^{\beta + \gamma} \left(\frac{u}{7} \right)) \sum_{\nu \mid u} \left(\frac{-35}{\nu} \right) + \nu(n; f_k)$

For $\alpha = 0$,

$$= \frac{1}{2} \left(1 + (-1)^{\beta + \gamma} \left(\frac{u}{5} \right) \right) (1 + (-1)^{\beta + \gamma} \left(\frac{u}{7} \right)) \sum_{\nu \mid u} \left(\frac{-35}{\nu} \right) \text{ for } 2 \mid \alpha, \alpha > 0,$$
$$= 0 \text{ for } 2^{\dagger} \alpha,$$

Where k = 3, 4, 5; $\left(\frac{u}{5}\right), \left(\frac{u}{7}\right), \left(\frac{-35}{v}\right)$ are Jacobi symbols and

$$v(n; f_3) = \frac{2}{3} \sum_{\substack{n=x^2+xy+9y^2\\2\dagger x}} (-1)^y$$

$$v(n; f_4) = v(n; f_5) = -\frac{1}{3} \sum_{\substack{n=x^2+xy+9y^2\\2\dagger x}} (-1)^y.$$

Theorem 5.

Let
$$n = 2^{\alpha} 5^{\beta} 7^{\gamma} u$$
, $(u, 10) = 1$, $f_6 = 5x^2 + 7y^2$,
 $f_7 = 3x^2 + 2xy + 12y^2$,
 $f_8 = 3x^2 - 2xy + 12y^2$. Then
 $r(n; f_k) = \frac{1}{6} \left(1 - (-1)^{\beta + \gamma} \left(\frac{u}{5} \right) \right) (1 - (-1)^{\beta + \gamma} \left(\frac{u}{7} \right)) \sum_{v \mid u} \left(\frac{-35}{v} \right) + v(n; f_k)$
for $\alpha = 0$,
 $= \frac{1}{2} \left(1 - (-1)^{\beta + \gamma} \left(\frac{u}{5} \right) \right) (1 - (-1)^{\beta + \gamma} \left(\frac{u}{5} \right)) (1 - (-1)^{\beta + \gamma} \left(\frac{u}{5} \left(\frac{u}{5} \right)) (1 - (-1)^{\beta + \gamma} \left(\frac{u}{5$

www.ijera.com

$$(-1)^{\beta+\gamma} \left(\frac{u}{7}\right) \sum_{\nu|u} \left(\frac{-35}{\nu}\right) \text{ for } 2|\alpha, \alpha > 0$$

= 0 for 2† α ,
where $k = 6, 7, 8$; $\left(\frac{u}{5}\right), \left(\frac{u}{7}\right), \left(\frac{-35}{\nu}\right)$ are
Jacobi symbols and
 $\nu(n; f_6) = -\frac{2}{3} \sum_{\substack{n=3x^2+xy+3y^2\\2\dagger y}} (-1)^x,$
 $\nu(n; f_7) = \nu(n; f_8) = \frac{1}{3} \sum_{\substack{n=3x^2+xy+3y^2\\2\dagger y}} (-1)^x.$

References

- [1.] H. Peterson, Modulfunktionen and quadratischen formen. Ergebnisse der Mathematik and ihrer Grenzgebeite [Results in Mathematics and Related Areas], 100. Springer-Verlag, Berlin, 1982, 71-75.
- [2.] P.Kaplan and K.S. Williams, On the number of representations of a positive integer *n* by a binary quadratic form. Acta Arithmetica, 114, 1, 2004, 87-98.
- [3.] Teimuraz Vepkhvadze, On the number of representations of a positive integer by certain binary quadratic forms belonging to multi-class genera. International journal of engineering research and applications (Ijera), Vol: 5, Issue: 6, 2015, 01-04.
- [4.] C.L. Siegel, uber die analytische theorie der quadratischen formen: Annals of mathematics, 36, 1935, 527-606.
- [5.] T.Vepkhvadze, Modular properties of thetafunctions and representation of numbers by positive quadratic forms. Georgian Math. Journal. Vol:4, № 4, 1997, 385-400.